Dimerization-based control of cooperativity.
نویسندگان
چکیده
Cooperativity of ligand-receptor binding influences the input-output behavior of a biochemical system and thus is an important determinant of its physiological function. Canonically, such cooperativity is understood in terms of ligand-receptor binding affinity, where an initial binding event changes the affinity for subsequent binding events. Here, we demonstrate that dimerization-a simple yet pervasive signaling motif across biology-can have significant control over cooperativity and even dominate over the canonical mechanism. Through an exhaustive parameter sensitivity analysis of a general kinetic model for signal-mediated dimerization, we show that quantitative modulation of dimerization processes can reinforce, eliminate, and even reverse cooperativity imposed by the canonical allosteric ligand-receptor binding affinity mechanism. The favored accumulation of stoichiometrically asymmetric dimers (those with ligand-receptor stoichiometry of 1 : 2) is a major determinant of dimerization-based cooperativity control. However, simulations demonstrate that favoring accumulation of such stoichiometrically asymmetric dimers can either increase or decrease cooperativity, and thus the quantitative relationship between stoichiometrically asymmetric dimers and cooperativity is highly dependent on the parameter values of the particular system of interest. These results suggest that the dimerization motif provides a novel mechanism for both generating and quantitatively tuning cooperativity that, due to the ubiquity of dimerization motifs in biochemical systems, may play a major role in a host of biological functions. Thus, the canonical, allosteric view of cooperativity is incomplete without considering dimerization effects, which is of particular importance as dimerization is often a necessary feature of the allosteric mechanism.
منابع مشابه
A Fluorescence Assay for Leucine Zipper Dimerization: Avoiding Unintended Consequences of Fluorophore Attachment
Formation of R-helical coiled-coil dimers represents one of the simplest examples of a specific protein-protein interaction. This dimerization mode is commonly observed among transcription regulator proteins, where the process is referred to as leucine zipper formation. Inhibitors of leucine zipper dimerization would allow one to control gene expression. As a first step toward identifying such ...
متن کاملCooperative binding of the yeast Spt10p activator to the histone upstream activating sequences is mediated through an N-terminal dimerization domain
The yeast Spt10p activator is a putative histone acetyltransferase (HAT) possessing a sequence-specific DNA-binding domain (DBD) which binds to the upstream activation sequences (UAS elements) in the histone gene promoters. Spt10p binds to a pair of histone UAS elements with extreme positive cooperativity. The molecular basis of this cooperativity was addressed. Spt10p (640 residues) is an elon...
متن کاملProduction of 1-Butene via Selective Ethylene Dimerization by Addition of Bromoethane as a New Promoter to Titanium-Based Catalyst in the Presence of Tetrahydropyran Modifier and Triethylaluminum Co-Catalyst
متن کامل
The Crystal Structure of the Intact E. coli RelBE Toxin-Antitoxin Complex Provides the Structural Basis for Conditional Cooperativity
The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex ...
متن کاملQuantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq
Cooperative binding of transcription factors is known to be important in the regulation of gene expression programs conferring cellular identities. However, current methods to measure cooperativity parameters have been laborious and therefore limited to studying only a few sequence variants at a time. We developed Coop-seq (cooperativity by sequencing) that is capable of efficiently and accurat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 10 7 شماره
صفحات -
تاریخ انتشار 2014